
Appendix KK

Vector Spaces and Matrices

A vector space is defined to be a set of elements called vectors for which vector addition and scalar multiplication is defined.
Vector addition assigns to every pair of vectors, x and y, a sum, x+ y, in such a way that

(1) addition is commutative, x+ y = y+ x,
(2) addition is associative, x+ (y+ z) = (x+ y)+ z,
(3) there is in the vector space a unique vector 0 (called the origin) such that x+ 0 = x for every vector x, and
(4) to every vector x in the space there corresponds a unique vector −x such that x+ (−x) = 0.

The multiplication of a scalar α times a vector x assigns to every pair, α and x, a vector αx in the vector space called the
product of α and x. Scalar-vector multiplication is such that

(1) multiplication by scalars is associative, α(βx) = (αβ)x,
(2) 1x = x for every vector x,
(3) multiplication by scalars is distributive with respect to vector addition, α(x+ y) = αx+ αy, and
(4) multiplication by scalars is distributive with respect to scalar addition, (α + β)x = αx+ βx.

An elementary example of a vector space is ordered sets of n numbers

xn =

⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦

with vector addition and scalar multiplication defined by the equations

xn + yn =

⎡
⎢⎢⎢⎣

x1 + y1
x2 + yn

...
xn + yn

⎤
⎥⎥⎥⎦ , axn =

⎡
⎢⎢⎢⎣

ax1
ax2
...
axn

⎤
⎥⎥⎥⎦ .

If the components of the vectors in this space are complex numbers, the vector space is denoted Cn. The vector space
consisting of ordered sets of real numbers is denoted Rn. Another example of a vector space is the set of polynomials

pn(x) = a0 + a1x+ a2x
2 + · · · + anx

n

with complex coefficients an. The addition of two polynomial and multiplication by a complex number is defined in the
ordinary way.

A finite set {xi} of vectors is said to be linearly dependent if there is a corresponding set {αi} of numbers, not all zero,
such that

∑
i

αixi = 0,
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where the zero on the right-hand side of the equation corresponds to the zero vector. If, on the other hand,
∑

i αixi = 0
implies that αi = 0 for each i, the set {xi} is linearly independent. To illustrate the idea of linear dependence, we consider
the following equation involving two vectors

α1

[
1
0

]
+ α2

[
0
1

]
=
[
0
0

]
.

Using the rules we have given previously for scalar multiplication and vector addition inCn, we can combine the two vectors
on the left-hand side of the equation to obtain

[
α1
α2

]
=
[
0
0

]
.

This last equation can only be true if the coefficients, α1 and α2, are both equal to zero. We thus conclude that the vectors,
[10]T and [01]T, are linearly independent. A basis in a vector space ν is a set of linearly independent vectors χ such that
every vector in the space can be expressed as a linear combination of members of χ . For instance, the vectors,

[
1
0

]
and

[
0
1

]
,

form a basis in the space C2.
An inner product in a vector space is a complex or real valued function of the ordered pair of vectors x and y such that

(1) (x, y) = (y, x), where the line over the ordered pair on the right indicates complex conjugation,
(2) (x,α1y1 + α2y2) = α1(x, y1)+ α2(x, y2),
(3) (x, x) ≥ 0; (x, x) = 0 if and only if x = 0.

The condition (1) implies that (x, x) is always real, so that the inequality in (3) makes sense. In a space with an inner
product defined, the norm of a vector ||x|| is defined

||x|| = √
(x, x).

The inner product thus makes it possible to associate a norm or length with every vector in the space. For the space Cn, the
inner product of two vectors

x =

⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣

y1
y2
...
yn

⎤
⎥⎥⎥⎦

is defined

(x, y) =
n∑
i=1

x̄iyi.

Now for a little terminology. The vectors, x and y, are said to be orthogonal if the inner product of the two vectors is equal
to zero

(x, y) = 0.

A vector x is said to be normalized if its norm is equal to one

||x|| = 1,

and a basis of vectors {φi} is said to be orthonormal if each basis vector is orthogonal to the other members of the basis and
if each basis vector is normalized.

The wave functions representing the states of a physical system may be thought of as vectors in a function space. The
inner product of two wave functions, ψ1 and ψ2, which depend upon a single variable x is defined

(ψ ,φ) =
∫
ψ1(x)ψ2(x) dx,
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and the inner product for wave functions depending on two or three variables is defined accordingly. For a particle moving
in three dimensions, the inner product of the wave functions, ψ1 and ψ2, is

(ψ ,φ) =
∫
ψ1(r)ψ2(r) dV,

where dV is the volume element.
The presence of a basis in a vector space makes it possible to associate a column vector in Cn with every vector in

the space and to associate a matrix with operators acting on vectors in the space. Let ν be a vector space and let χ =
φ1, φ2, . . . ,φn be a basis of χ . Using the basis, a vector x may be expressed

x =
n∑
i=1

xiφi, (KK.1)

and we may associate a column vector,

x =

⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ ,

with each vector x.
The product of an operator A and a vector x is a vector which may also be expressed as a linear combination of the basis

vectors φi. This will be true when A acts on the members of the basis itself

Aφj =
n∑
i=1

aijφi, (KK.2)

for j = 1, . . . , n. The set {aij} of numbers, indexed with the double subscript i, j is the matrix corresponding to A. We shall
generally denote the matrix of A by [A]. The matrix may be written more explicitly in the form of a square array

[A] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
an1 an2 · · · ann

⎤
⎥⎥⎥⎦ . (KK.3)

If the basis is orthonormal, an explicit expression can be derived for the matrix elements aij by using the inner product.
Taking the inner product of Eq. (KK.2) from the left with φk, gives

(φk, Aφj) =
(
φk,

n∑
i=1

aijφi

)
=

n∑
i=1

aij(φk, φi) = akj.

To derive this last equation, we have used the second property of the inner product and the fact that the basis is orthonormal.
The last result may be written

akj = (φk, Aφj).

The result of acting with an operatorA upon a vector x can be obtained from the matrix associated with A and the column
vector associated with x. Using Eqs. (KK.1) and (KK.2), we obtain

Ax = A

(
n∑
i=1

xiφi

)
=

n∑
i=1

xiAφi =
n∑
i=1

xi

n∑
j=1

ajiφi =
n∑
j=1

(
n∑
i=1

ajixi

)
φj.

We may write

(Ax)j =
n∑
i=1

ajixi.

The jth component of the vector Ax may thus be obtained by forming the sum of the elements of jth row of the matrix
[A] times the components of the column vector [x]. As an example of this rule, we give the result of the matrix-vector
multiplications in Problem 10.7:
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⎡
⎣
1 2 0
1 1 2
1 3 1

⎤
⎦
⎡
⎣

1
1
0

⎤
⎦ =

⎡
⎣

3
2
5

⎤
⎦ ,

⎡
⎣
1 0 1
1 2 1
1 1 3

⎤
⎦
⎡
⎣

1
0
1

⎤
⎦ =

⎡
⎣

2
2
4

⎤
⎦ ,

⎡
⎣
2 1 1
1 0 1
1 1 0

⎤
⎦
⎡
⎣

1
2
1

⎤
⎦ =

⎡
⎣

5
2
3

⎤
⎦ .

The matrix corresponding to the product of two operators, A and B, may be obtained by allowing to AB to act upon an
element of the basis

(AB)φj = A(Bφj) = A

(
n∑

k=1

bkjφk

)
=

n∑
k=1

bkjAφk,

n∑
k=1

bkj

(
n∑
i=1

aikφi

)
=

n∑
i=1

(
n∑
i=1

aikbkj

)
φi.

We thus define the matrix product [A][B] by the equation

([A][B])ij =
n∑

k=1

aikbkj. (KK.4)

The process of forming the product of two matrices can be described in terms of the individual matrices. To obtain the ijth
element of the product matrices, one forms the sum of the products of the elements of the ith row of [A] with the elements
of the jth column of [B]. The matrix multiplication will be well defined only if the matrix [A] has as many columns as the
matrix [B] has rows. As an example of the rule (KK.4) for multiplying matrices, we give the result of the matrix-matrix
multiplications in Problem 10.8: [

0 1
1 1

][
0 −i
i 0

]
=
[
i 0
0 −i

]
,

[
0 1
1 1

][
2 0
0 −2

]
=
[
0 −2
2 0

]
,

⎡
⎣
1 2 0
1 1 2
1 3 1

⎤
⎦
⎡
⎣

2 1 1
1 0 1
1 1 0

⎤
⎦
⎡
⎣

4 1 3
5 3 2
6 2 4

⎤
⎦ .


